Measuring Team Chemistry with Social Science Theory

Every athlete, professional or otherwise, talks about that feeling of being on a team. There’s something that happens when a team “clicks” – it’s a united feeling of team spirit that propels team members to compete, most often referred to as team chemistry. In the social sciences there’s no measure of team chemistry, but there is however Team Cohesion, which is defined as:

A dynamic process that is reflected in the tendency of a group to stick

together and remain untied in the pursuit of its instrumental objectives

and/or for the satisfaction of member affective needs [1].

Team cohesion has been shown to exist across multiple work group settings (organizational, military and sport) [2], as well as across multiple sports (basketball, golf [3], softball, and baseball [4]). Perhaps more interestingly, cohesion has also been bi-directionally linked to performance: when teams perform better, they are more cohesive; and when they are more cohesive, they perform better [2,5]. And while the research on this relationship is clear, it has mostly been conducted with non-professional teams. Indeed, team cohesion is one of many other “unobservable” properties that are untapped within profession sports.

How can we measure team cohesion in professional sports?

 As researchers, we would normally use a validated survey to measure team cohesion – a survey that I could rely on to accurately measure team cohesion. Unfortunately, when I don’t have access to a team, I’m forced to use alternative methods. The first step is to examine the literature; a few key findings are brought to light about indications of team cohesion:

  • Team cohesion is related to the extent that members accept the roles on their team (captain, motivator, leader, follower, etc.) [6].
  • Charismatic leaders will refer to their teams more often than referring to themselves [7].
  • The higher the level of team cohesion, the better the team performance [2,5].

So, if I can somehow measure how often leaders refer to their teams (vs. themselves), then I can use this as an approximation of their leadership characteristics. And if leaders are acting like leaders, they may also be helping to solidify roles within their team. Therefore we might expect that:

Hypothesis 1: As leaders reference their team more, we should see increased team cohesion – and as team cohesion increases, we should see better performance.

A charismatic leader does not typically arise without a contextual or conditional trigger. Crisis often prompts the emergence of charismatic leadership – a setting that allows a charismatic leader to propose an ambitious goal [8]. Both the context and the charismatic leader influence one another, almost as if the leader requires crisis as an occasion to exemplify charismatic leadership [9]. Additionally, at the group level, team members have been shown to become more attached to the leader in times of crisis, prompting a greater presence of cohesion during times of crisis as followers rally around the charismatic leader [10].

In baseball, teams experience all types of crises throughout the long season, including injuries, losing streaks, playoff races, and team conflicts. Perhaps the most common and least contextual of these crisis is the race to the playoffs as the season comes to an end. With an understanding of how and when the playoff races begin to make an impression, I can expect to observe a temporal effect of charismatic leadership by using our previous indicator of team reference. That is, it may not only be that “there is a positive relationship between a leader’s team references and the amount of wins his team will have at the end of the regular season”, but also:

Hypothesis 2: The timing of when a team leader references his team can determine the effectiveness of his leadership.

Methods

As the first component of the measure, I needed to assess team leaders’ reference to themselves or their team, I used the most popular newspaper from that team’s city to extract quotations (e.g., San Francisco Chronicle for the Giants; the New York Times for the Yankees). A team leader was identified by teammates, coaches, or front offices as a “leader”, a “captain”, or having either of these qualities. If there was more than one identified team leader, I randomly chose between the two. I tracked the quotes from 8 randomly selected baseball team leaders from 8 randomly selected teams across an entire regular season (April 4th, 2012 – October 3rd, 2012). Statement settings included comments made in locker rooms after games, during the All-Star break, before a game started, or in any other setting. Any time the leader was documented as saying anything that appeared in the newspaper, that quote was documented for analysis. Leader quotes were qualitative coded independently between 3 different coders. Each quote was coded as containing “self-reference”, “team-reference”, and/or “other reference” (the 3 coders had 97% agreement on their final codes). I began this study in 2013 thus I used the 2012 season, which was the latest complete season at my disposal.

Due to the disparity in responses, the sample was aggregated based on team leaders who played on teams that finished with a certain number of wins. Since 1996, no AL team has made the playoffs with less than 86 wins [11]. During the same time period, no NL team has made the playoffs with less than 82 wins [12]. For this study, leaders were categorized based on how their teams finished the regular season (86 or more wins for AL teams and 82 or more wins for NL teams). Those at or above the win mark were titled “high team leader” (HTL) and those below the win mark were titled “low team leader” (LTL). Four teams in the sample met the HTL criteria and their combined record was 368 – 280 (.568 wining percentage). Not all HTLs were on teams that made the playoffs in 2012, but each of the four teams were competing for a playoff spot in the months of August and September. Four teams in the sample met the LTL criteria and their combined record was 296 – 352 (.457 winning percentage).

 

High or low team leader classification

Team League 2012 Regular Season Record Team Leader High or Low Team Leader
Angels AL 89-73 Torii Hunter HTL
Giants NL 94-68 Buster Posey HTL
Yankees AL 95-67 Derek Jeter HTL
Rays AL 90-72 Evan Longoria HTL
Rockies NL 64-98 Michael Cuddyer LTL
Twins AL 66-96 Justin Morneau LTL
White Sox AL 85-77 Paul Konerko LTL
Phillies NL 81-81 Jimmy Rollins LTL
     Table 1. Classification of high or low team leaders based on their team’s 2012 regular season record

Results

There was no significant correlation between the total number of team references and the total number of wins that a leader’s team had at the end of the regular season r = .237, p > .05). Nor was there an indication of a negative correlation between self-references and total number of team wins r = -.086, p > .05.

Leader responses were then aggregated between LTLs and HTLs. Of the 490 total responses, 252 responses were made after or in reference to a previous game. Quotes were then selected for these post-game interview responses after a leader’s team had won a game (162 total) or lost a game (90 total). After a loss, both HTLs and LTLs referred to their teams much more often than referring to themselves. LTLs were 7.20 times as likely to reference their team after a loss than reference themselves. When compared to LTLs, HTLs were less likely to refer to their team after loss (4.42:1). After a win, LTLs were 1.41 times as likely to reference their team than themselves. HTLs on the other hand were 2.32 times as likely to reference their team than themselves after a win (Table 1).

Reference to team or self as ratio

Leader Loss Win
HTL 31:7 (4.42:1) 65.28 (2.32:1)
LTL 36:5 (7.20:1) 45:32 (1.41:1)
     Table 2. Ratios of team vs. self references for each type of leader

The monthly distribution of team reference for LTLs was relatively even across all months of the regular season. The highest percentage was July (19.9%) and the lowest was August (12%), a difference of 7.9% (Figure 1). The overall standard deviation for team references by month was σ = 2.88. In contrast, team reference for HTLs was much more dynamic. The highest percentage was September (39.6%) and the lowest was June (5.8%), a difference of 33.8%. September team references for HTLs were more than double any other month. The overall standard deviation was σ = 12.2, with the resulting distribution becoming much more parabolic (Figure 2). The quadric trend line that is used to represent the team reference distribution for HTLs showed a very good fit R2 = .91.

nullFigure 1. Percentage of team reference by month LTLs
           Figure 2. Percentage of team reference by month HTLs with quadratic trend line

 

Discussion

The increased rate of team reference by HTLs as compared to LTLs may have helped to establish better role clarity – a characteristic of more cohesive teams. This was further marked by the fact that HTLs were on higher performing teams than LTLs. The direction of the team cohesion to performance relationship in this case is still unknown.

HTLs also referred to their teams most often during the end of the regular season. This relates to the theory that charismatic leaders will “activate” in times of crisis. In turn, this helps to create more team cohesion as members attach themselves to leaders in times of crisis.

 

[1] Carron, A.V., Colman, M.M., Wheeler, J., & Stevens D. (2002). Cohesion and Performance in Sport: A Meta Analysis. Journal of Sport & Exercise Psychology, 24, 168-188.

[2] Mullen, B. and Copper, C. (1994). The relation between group cohesiveness and performance: an integration. Psychological Bulletin.115, 210-227.

[3] Vincer, D., & Loughead, T.M. (2010). The Relationship Among Athlete Leadership Behaviors and Cohesion in Team Sports. The Sport Psychologist, 24, 448-467.

[4] Carron, A.V., Bray, S.R., & Eys, M.A. (2002). Team Cohesion and Team Success in Sport. Journal of Sports Sciences. 20(2). 119-126.

[5] Oliver, L.W., Harman, J., Hoover, E., Hayes, S.M., & Pandhi, N.A. (2003) A quantitative integration of the military cohesion literature. Military Psychology, 11, 57-83.

[6] Carron, A. V., & Eys, M. A. (2012). Group dynamics in sport (4th ed.). Morgantown, Fitness Information Technology.

[7] Shamir, B., Arthur, M.B., & House, R.J. (1994). The rhetoric or charismatic leadership: A theoretical extension, a case study, and implications for research. The Leadership Quarterly, 5(1), 25-42.

[8] Poon, J. & Fatt, T. (2000). Charismatic Leadership. Equal Opportunities International. 19(8), 24-28.

[9] Conger, J. A. (1999). Charismatic and transformational leadership in organizations: An insider’s perspective on these developing streams of research. The Leadership Quarterly, 10, 145-179.

[10] Kets de Vries, F. R. (1988). Prisoners of leadership. Human Relations, 41, 261-280.

[11] Gaines, C. (2011, April 21). Chart of the Day: What it takes to make the playoffs in Baseball. Business Insider. Retrieved from http://www.businessinsider.com/chart-of-the-day- what-it-takes-to-make-the-playoffs-in-baseball-2011-4

[12] Bloom, B.M. (2005). Padres Try to Recover from 82-80 Record. San Diego Padres. Retrieved from http://m.padres.mlb.com/news/article/1236830/



Print This Post

PhD in Applied Research Methodology. Proponent of psychometrics in sports. More work at Burkmont.com

newest oldest most voted
Simon
Guest
Simon

Very interesting. Do you have a list of players ranked by self reference vs team reference? Also, do you have a guide to coding the statements? Would be interesting to see a list of real-life statements from two players — one who scored highly on self reference and the other on team reference.

zdollarsigns
Member
zdollarsigns

I would imagine team chemistry probably would affect how teams under or over perform both in pre-season projections and with in season sequencing. Have you tested for a correlation between team references and difference between actual wins and base run wins?