Archive for August, 2015

Context: Neutral or Dependent?

Every statistic is an answer to a question. “How often does a batter reach base?” is answered by On-Base Percentage. “How many extra bases does a hitter average per at bat?” leads us to Isolated Power. A statistic is only as good as it’s generating question and if you’re asking a silly question, the statistic may give you a silly answer. Stats like pitcher wins, saves, and RBI all answer questions, but they don’t really answer questions we really want to know the answer to.

RBI, for example, tells you how many times a batter has had their hit, walk, or sacrifice fly lead directly to a runner crossing the plate. On the surface, this may seem like a useful statistic as a measure of run production. But you soon realize that RBI is reliant on the number of opportunities each player has to drive in runs. Coming to the plate with a man on first and coming to the plate with a man on third are not the same type of RBI opportunity, even if the batter hits a single in both situations.

In other words, RBI is a very crude context-dependent statistic. Generally, RBI isn’t very useful because it doesn’t provide you with a lot of information about individual player’s role in the production of a run. If they have a lot of RBI, did they have a ton of opportunities? Did they cash in on a large percentage of their opportunities? You don’t really know. But the fact that RBI doesn’t provide much insight does not mean that context-dependent stats aren’t valuable when designed properly. Essentially, context-neutral and context-dependent stats are both useful, but they are simply answering different questions.

Read the rest of this entry »


The Beginner’s Guide To Single-Season BABIP

Batting Average on Balls in Play (BABIP) is one of the most commonly cited statistics in sabermetric analysis, and it’s role in mainstream coverage of the sport is growing as well. BABIP is a measure of how often “balls in play,” or non-home run batted balls, fall for hits. It’s an easy statistic to understand, but it’s not always the easiest statistic to use properly.

The problem occurs when people focus too heavily on one of the three main drivers of BABIP, which are player quality, defense, and luck. Most of the discussion surrounding BABIP is on the amount of luck that is involved. For some people, BABIP is simply a measure of how lucky or unlucky a player is getting over a period of time. But in reality, that is only part of the equation. Certain hitters consistently produce higher BABIP than others, and the presence of a good defense behind a pitcher can absolutely suppress their BABIP even before we consider the role of luck in the process.

Read the rest of this entry »


How To Use FanGraphs: Live Scoreboard

You’ve probably had a chance to peruse our leaderboards and player pages, and hopefully you’ve had a chance to check out our posts about getting the most out of the leaderboards and player pages. Another thing you might have seen on the site, or being shared on the internet, is our live win probability graph. It looks like this:

chart (8)

Read the rest of this entry »