Basic Principles of Free Agent Contract Evaluation

While it’s January and many free agents have decided where they will be playing in 2016 and beyond, there are still some notable players without new teams. One thing I’m struck by each offseason is how frequently some people comment on new contracts without a good grasp of how teams and players settle on a term of years and dollars. In particular, it’s common to hear these comments from pundits and fans who aren’t quite as plugged into the game as regular readers of sites like FanGraphs.

So for the new reader, or the old one looking to explain the finer points to their friends, here are some basic principles about free agent contracts to remember when thinking about their prudence.

Team Pay For Future Wins

While “projections” and “WAR” are sometimes met with eye-rolling from casual fans, those complaints ought to be more about specifics than concepts. In other words, when a team goes to sign a player to a new contract, their goal is to estimate how good that player is going to be for the term of the deal. Past performance is a relevant factor, of course, but teams care about signing players who will be valuable to them next year and in the future.

It’s important to remember that when we talk about these concepts at FanGraphs, we often talk about projection systems like Steamer and ZiPS and valuation models like WAR, but that doesn’t mean teams use those exact tools to make their decisions. The key point is that teams use the same concepts in making their decisions: future projection and contribution to winning. It’s entirely possible that our projections systems and WAR models aren’t very good and that teams know better when we criticize a signing, but teams are absolutely thinking about how productive a player will be in the future when the make an offer.

This also brings up player aging. Again, as public analysts we might not know exactly how a player will age, but a player’s age is a very important factor in contract negotiations because it informs the probability that he produces in the future. For example, Ben Zobrist is probably better than Justin Upton at this precise moment, but Justin Upton is much younger and is likely to stay closer to his current level of performance for longer than Zobrist. As a result, a team will probably give Upton more money because the overall value he will bring will be higher, even if he’s worse to start.

Inflation Matters

The number one pet peeve I have in sports contract analysis is people who don’t understand the baseline values of the moment. There will be many people who criticize moves this winter because they think a given player was paid well above his ability, when in reality, the market simply pays everyone more than it once did. For example, Mike Pelfrey got $8 million a year. That sounds like a lot of money if you’re in a 2007 mindset, but $8 million is simply not that much money in 2016.

Baseball is doing extremely well financially these days and player salaries are rising as a result. If anything, salary growth isn’t keeping pace with the financial health of the sport and players should be getting paid even more. It’s hard to conceptualize this if you follow sports will salary caps more closely because the ability for teams to really break the bank is restricted in those cases. Also, the average person probably hasn’t seen their own salaries increase substantially over the last few years, so your mind might not be as prepared for large increases in particular sectors.

In other words, you can’t judge a contract by what players signed for three, four, or five years ago unless you make proper adjustments. It’s worth looking at Carlos Beltran‘s first big deal when evaluating the Jason Heyward deal, but you have to first adjust your baseline to the 2016 salary levels. Just because a player who was much better signed a deal for $15 million a year in 2011 doesn’t mean a worse player doesn’t deserve $15 million a year in 2016.

Teams Pay For Entire Contracts

Another common misconception is the idea that the back ends of contracts drag down the value of a deal. Simply put, teams sign players for a total number of years and dollars and the annual salaries are only important from an accounting perspective. If you sign a player to a 5 year, $100 million contract, it does not matter if the player isn’t worth $20 million in year five. All that matters is that the player is worth $100 million over the entire life of the contract.

In a basic sense, you might want to get 12 WAR from a player signed to a $100 million deal. For the deal to make sense, the player doesn’t have to be worth 2.4 WAR each year. It’s perfectly fine for the player to be worth 4, 4, 2, 2, and 0 WAR over the five seasons. In the last year of the deal, the team will be paying $20 million for a replacement level player (a guy you could replace for $500K), but it doesn’t matter because they will have gotten 4 WAR for $20 million (a massive bargain) in each of the first two seasons. It’s like an interest free loan from player to team.

Teams known that players will decline over the life of most contracts. In year one they will be getting more value for their money and in year five they will be getting less, but they only care about getting good value overall. All agreements look bad if you only focus on the part of the deal that benefits the other side. Teams get value on the front end of deals and players get value on the back end. This works because teams care more about money in the short run, as they have to think about having available cash for other players, while players don’t mind waiting to receive their full sum because most people won’t notice the difference in quality of life from having $20 million today and $80 million later versus $100 million now.

This isn’t to say that we, as analysts, will always get the contract values right. Sometimes teams know more about a player than we do, but it’s important to remember that while contracts are paid out pretty evenly over the years, teams do not expect performance to be distributed the same way.

Dollars Per WAR ($/WAR) is About Alternatives

In a lot of our contract analysis, we use something called $/WAR. Sometimes that gets ridiculed as an overly simplistic and meaningless metric we use because we are the kind of fans who like thinking about teams as puzzles rather than as athletic opponents who like to win. But I think it’s important to state what is implied when $/WAR is used.

$/WAR is basically a measurement of how much teams are paying for players on the free agent market according to how many wins they will add over replacement level players. Right now, we think teams are paying about $8 million per every WAR they add to their roster. For example, a 2 WAR player signed for three years would theoretically provide his team with 6 WAR, so a team might want to pay him anything up to $48 million. If the team pays less than $8 million for each expected WAR, we call this a “good deal” and if they pay more, we say they “overpaid.”

There are a couple of important things to know about this type of analysis that is easy to miss because we tend not to spell them out over and over again. First, that $/WAR of $8 million is an average number we estimate based on all players and some basic projections. It’s not perfect. Neither are our estimates of player performance. Something might look like an overpay to us simply because we misjudge a player’s talent. Second, each team has different incentives to spend on players. A team that is very close to a playoff berth might be incentivized to overspend because that specific, extra couple of wins could be a giant deal.

But most importantly, $/WAR is not an end in and of itself. I think sometimes people think we treat it that way because we don’t explain why it’s so important each and every time we cite it. There is no prize for being the team that spends its money most efficiently on the free agent market. If you sign a bunch of 1 WAR guys for $6 million per year, you’re going to get a lot of good marks on $/WAR, but your team probably won’t win a lot of games. Rather, $/WAR analysis is about alternatives. If you overspend on your left fielder, you have less money available to spend on your second baseman. We don’t care if teams set fire to a pile of money, we care about them burning that money if it means they can’t afford to do something else and it hurts their overall success.

Think of it this way, your team needs two corner outfielders and you have $25 million in yearly salary available to sign both. Roughly speaking, that will buy you 3 total WAR. If you sign a 2 WAR outfielder for $20 million, you are getting a good player for slightly more money than he’s worth. That leaves you with $5 million to spend on the other guy, and that $5 million will only buy you a 0.6 WAR outfielder. That means you have 2.6 WAR for $25 million. That’s an inefficient use of your money based on what teams are paying players on average.

This doesn’t matter if you have an unlimited amount of money because you could just sign the best available guy at each spot and wind up with the best team, but if you have a fixed budget, making deals for market or below-market rates means that you have money left over to spend elsewhere. If you have one spot to fill, a 1 WAR guy for $4 million is efficient, but a 2 WAR guy for $16 million contributes to more success. The question you have to ask is if you could sign the first guy and then reinvest that $12 million in an additional player worth more than 1 WAR. It’s not about winning economics class, it’s about using the money you do have to make the best team. Spending efficiently helps you do other things that will help you win.

The Others

Finally, there are a couple of other things to throw into the pot. First, the luxury tax. If teams spend more than $189 million on players per year, they get taxed on the amount by which they exceed $189 million. This is a soft salary cap that deters teams from spending too much. It doesn’t mean teams won’t spend more to sign players, but it does mean that signing players once you’re past that mark gets more expensive relative to teams that are well below that level. It’s a tax that needs to be factored in, but it doesn’t get added to a player’s actual contract value.

Second, the qualifying offer imposes a tax on teams that sign certain players. This needs to be considered when evaluating contracts. Yes, draft picks are not sure things, but they do come with an expected return. You wouldn’t ignore a great player just because it will cost you a pick, but the value of that pick should be factored into your evaluation of the signing.

Third, opt outs have financial value. It’s unclear exactly how much, but some estimates put them at about $20 million in favor of the player. That’s not all bad for teams, as it’s a way to give a player a benefit without it counting toward the luxury tax. No matter how much it is worth, it is a commodity which has financial value.

****

A lot of you might have a good grasp on these factors, but it never hurts to brush up. Teams pay for the future, baseball inflation happens faster than real inflation, we care about total value not yearly value, and $/WAR is about maximizing your money.


The Beginner’s Guide To Aging Curves

This time of year is about roster decisions. Teams are working to build their 2016 rosters with an eye on how 2016 fits into their overall plan. Some teams are looking at their current roster and payroll and deciding to go for it, while others are setting themselves up for a bright future. Clubs are making trades and signing free agents, and from the outside, we’re trying to figure out which moves are good and which aren’t.

There are a lot of factors that go into evaluating a particular transaction or set of transactions. Far too many to talk about all at once. But we can generally agree that our attempt to forecast future player performance is central to any effort. In order to know if the Cubs made a smart move in signing Ben Zobrist, we need to develop some prediction about how good Zobrist will be over the life of his four-year deal. Obviously, this is a tricky business.

We are trying to project Zobrist’s future. We’ve talked about projections in this space before. They are estimates of true talent, adjusted for aging. You can read more about the basics here, but this article will focus on the aging component. In order to make decisions about players, we need to know how good they are presently and how those skills will improve or decline in the future.

Read the rest of this entry »


Understanding The Qualifying Offer

The World Series ended just over a week ago, but the offseason is already in full swing. Free agents are free to sign with any club they wish and we’ve even had our first significant trade. The MLB offseason is a little slower to develop than some of the other major sports, but there is plenty to follow from the start. One of the first steps in the offseason journey is the extension and acceptance or decline of the Qualifying Offer (QO). The qualifying offer is a pretty simple concept that comes along with some relatively important consequences.

It works like this. Teams who are losing free agents are able to offer those free agents a one-year contract which the players can choose to accept or reject. If the player rejects the contract and signs with another team, the team who lost the player gets an extra (between the first and second rounds) draft pick the following June and the team signing the player loses their first round pick the following year. Because this is baseball, there are a number of nuances to that description.

Read the rest of this entry »


Two Different Ways To Be Wrong: Sequencing and Bad Projections

Baseball analysts are frequently wrong. Everyone who writes for this website picked the Nationals to win the NL East, for example. We also split between Detroit and Cleveland for the AL Central, with no votes for the Royals. Predicting baseball is difficult because it’s a game with many variables and lots of randomness. It is probably very unlikely that a world class chess player would lose to a novice in any one game, but it’s especially unlikely they’d lose more often than not over 100 games. In baseball, there are so many things impacting single games, and there are 2,430 games, so predicting a full season is especially challenging.

And as has been noted in a lot of places, we didn’t do a great job predicting the 2015 season. The Rangers, Astros, Blue Jays, Royals, and Mets weren’t exactly consensus playoff picks. Whoops!

This has led to plenty of push back against sites like ours and serves as a criticism of the work we do when it comes to predicting the game. Presumably, if we can’t accurately predict which teams will be good and bad, you might not want to put a ton of stock in what we’re saying. Surely, no reasonable person would hold anyone to a standard of perfection, but whiffing often can be a sign of a flawed process.

I’m not going to litigate exactly where our projections may or not be flawed in this post, but rather, I want to separate out two very different components of overall wrongness. In fact, there are essentially two ways in which our overall estimates of the league can be incorrect and you should understand the forces at play when determining how much stock to put into the work done here, and at other sites like Baseball Prospectus.

Read the rest of this entry »


The Beginner’s Guide To Pulling A Starting Pitcher

Unfortunately, if you are a major league front office employee, this is not a presentation of ground-breaking new research regarding the prediction of pitcher meltdowns that will save you innumerable frustrations. Rather, this post provides a summary of some of the basic factors that go into the decision to pull a starting pitcher. If you’re new to the game or are just starting to pay attention to sabermetrics, it’s likely that you haven’t really ever had a run down of the different decisions a manager needs to make when plotting out their mid- to late-inning choices.

The conventional wisdom is generally about two things, fatigue (usually in terms of pitch count) and effectiveness (usually in terms of a stat line or recent hitter performance). A pitcher will get yanked after 100-115 pitches unless they are absolutely dealing or a pitcher will get yanked if they’re getting hit around a lot. Over the first seven or eight innings, that’s typically the mindset of many. Of course, there’s the obnoxious “save situation” problem that arises in the ninth inning, but we’ll leave that for another day.

But in general, while fatigue and effectiveness are good variables, the decision to pull a starting pitcher is multi-dimensional. Let’s consider some of the factors in more depth.

Read the rest of this entry »


Context: Neutral or Dependent?

Every statistic is an answer to a question. “How often does a batter reach base?” is answered by On-Base Percentage. “How many extra bases does a hitter average per at bat?” leads us to Isolated Power. A statistic is only as good as it’s generating question and if you’re asking a silly question, the statistic may give you a silly answer. Stats like pitcher wins, saves, and RBI all answer questions, but they don’t really answer questions we really want to know the answer to.

RBI, for example, tells you how many times a batter has had their hit, walk, or sacrifice fly lead directly to a runner crossing the plate. On the surface, this may seem like a useful statistic as a measure of run production. But you soon realize that RBI is reliant on the number of opportunities each player has to drive in runs. Coming to the plate with a man on first and coming to the plate with a man on third are not the same type of RBI opportunity, even if the batter hits a single in both situations.

In other words, RBI is a very crude context-dependent statistic. Generally, RBI isn’t very useful because it doesn’t provide you with a lot of information about individual player’s role in the production of a run. If they have a lot of RBI, did they have a ton of opportunities? Did they cash in on a large percentage of their opportunities? You don’t really know. But the fact that RBI doesn’t provide much insight does not mean that context-dependent stats aren’t valuable when designed properly. Essentially, context-neutral and context-dependent stats are both useful, but they are simply answering different questions.

Read the rest of this entry »


The Beginner’s Guide To Single-Season BABIP

Batting Average on Balls in Play (BABIP) is one of the most commonly cited statistics in sabermetric analysis, and it’s role in mainstream coverage of the sport is growing as well. BABIP is a measure of how often “balls in play,” or non-home run batted balls, fall for hits. It’s an easy statistic to understand, but it’s not always the easiest statistic to use properly.

The problem occurs when people focus too heavily on one of the three main drivers of BABIP, which are player quality, defense, and luck. Most of the discussion surrounding BABIP is on the amount of luck that is involved. For some people, BABIP is simply a measure of how lucky or unlucky a player is getting over a period of time. But in reality, that is only part of the equation. Certain hitters consistently produce higher BABIP than others, and the presence of a good defense behind a pitcher can absolutely suppress their BABIP even before we consider the role of luck in the process.

Read the rest of this entry »


How To Use FanGraphs: Live Scoreboard

You’ve probably had a chance to peruse our leaderboards and player pages, and hopefully you’ve had a chance to check out our posts about getting the most out of the leaderboards and player pages. Another thing you might have seen on the site, or being shared on the internet, is our live win probability graph. It looks like this:

chart (8)

Read the rest of this entry »


Using FanGraphs to Find Bryce Harper Facts

There are a lot of reasons you might have arrived at FanGraphs. Perhaps you’re here for the articles or you’re just trying to find a detailed fantasy baseball game, but there’s a good chance that our various statistics are a big part of the draw for you. We host a lot of numbers and there’s a lot you can do with them if you know where to look. Last year, I put together a primer on how to use the FanGraphs Leaderboards to aid readers in their efforts to manage the information we provide.

If you’re new to the site, that’s a great place to start, but if you’re somewhere between newbie and expert, this post might help you get the most out of what we have to offer. When you’re thinking about baseball, there are a lot of questions you might want to answer. How do these two players compare? How does this player measure up historically? How rare is this particular thing?

Today, we’re going to use Bryce Harper‘s exciting 2015 season to explore some of the features available at FanGraphs. This isn’t an exhaustive run down of the tools, simply an explanation of some of the more useful ones that don’t get enough recognition. If you’re reading this in the future, the screen grabs for 2015 are current through July 18, 2015, but the links will update automatically with new data.

Read the rest of this entry »


The Beginner’s Guide to Service Time

While there’s rightfully plenty of focus on the events on the field, teams and fans are also interested in getting the right players onto the roster in the first place. This is why there’s so much focus on free agency, the trade deadline, and the draft. Games are won and lost on the field, but it’s a whole lot easier to win if you’ve assembled a good roster. As a result, we spend a lot of time evaluating roster moves. We care about how well teams are using their resources to assemble a team. One of the important concepts to understand when evaluating these moves is service time.

Service time is exactly what it sounds like; the number of years and days of major league service a player has in their career. Typically, it’s written as Year.Days, so we would express a player with four years and one hundred and fifteen days of service time as 4.115. You earn a day of service time for every day you are on the 25-man roster or the major league disabled list during the regular season. If you’re called up on June 22 and you’re sent down after June 28, you’ve earned seven days of MLB service. Your team doesn’t have to play a game for you to accrue a service day.

There are usually about 183 days in an MLB season, but a player can only earn a maximum of 172 days per year. That means if you’re on the roster for 178 days, you earn 172 days. If you’re on the roster for 183 days, you also earn 172 days. Not surprisingly, 172 days of service is equal to one year of service.

Read the rest of this entry »


Team Record, Pythagorean Record, and Base Runs

The currency of baseball is wins. The ultimate goal is to win enough games to make the postseason and then win enough games in the postseason to win a World Series. For that reason, we care a lot about what leads to wins and losses, and outscoring your opponent is the only path to victory. This is all pretty obvious, but if we unpack it we stumble on to some pretty important realizations.

Before we go anything further, this post stays at 30,000 and serves as an introduction to Pythagorean Record and Base Runs. I won’t be going into the details of the exact formulas, but rather why these statistics are useful when looking at the team level. If you’re already well-versed in the various expected records, there probably isn’t a lot of new information below.

Read the rest of this entry »


Measuring Pitching Value is Complicated

You’re likely aware that there are different versions of Wins Above Replacement (WAR) housed here, at Baseball-Reference, and at Baseball Prospectus (called WARP). For a lot of people, this makes the statistic confusing because it seems like there shouldn’t be multiple ways to calculate something with the same name. To the credit of the critics, somewhere along the way we should have agreed on a way to make it easier to communicate which statistic is which that’s a little more clear than fWAR, rWAR, and WARP, but that’s not the focus of the discussion today.

When it comes to WAR for position players, the differences among the models are less philosophical and more technical. The sites use different defensive components, different base running stats, and a few other differences in the same vein, but the overall approach is pretty much equivalent. The inputs are different, but the different WARs agree on what should be measured. When it comes to pitching, it gets more complicated because what should be measured becomes the debate itself. This article doesn’t intend to tell you which WAR is best, but rather to walk through the decisions that one needs to make when evaluating a pitcher’s value.

Read the rest of this entry »


The Beginner’s Guide To Plate Discipline

At its heart, baseball is a battle to control the strike zone. There are plenty of other things going on, but the origin of the action is over the plate. Good hitters make good decisions about when to swing and when to take and good pitchers attempt to negatively impact that decision-making process. As the importance of walks and working counts became clear over the last generation, hitters who knew the zone and pitchers who could generate swinging strikes became very popular.

Throughout history, batters have been judged by their results. Things like batting average and RBI have given way to wOBA and WAR, but in general the average fan cares about the outcomes rather than the process. Plate discipline numbers are inherently process based. You don’t get credit in the box score for taking a pitch just off the plate, but taking a pitch just off the plate is probably going to help you do things that lead to runs, like walking and getting good pitches to hit.

Read the rest of this entry »


The Difference Between Range and Positioning

Perhaps one of the biggest objections people have with the current state of defensive metrics is that the stats don’t account for the starting position of the defender. Shift plays are excluded from the calculations, but when a center fielder plays in 20 feet, the system doesn’t know that he’s starting from a different spot than the average center fielder, which could obviously lead to some imprecise accounting.

This is true for every position except pitchers and catchers, as the starting location of the fielder influences the probability they will make a play, independent of anything they do from the moment the ball is pitched. If you start out of position, even if you run at top speed and take a perfect route, you might not be able to offset the initial disadvantage of not being in the right spot to begin with. This creates problems, but there’s a lot of nuance to these problems that are worth discussing, even as we get closer to having StatCast and rendering the discussing irrelevant (we hope!).

Read the rest of this entry »


How To Use FanGraphs: Depth Charts

In addition to the daily analysis and normal statistical offerings, FanGraphs has added some pretty useful and powerful features over the last couple of years. Anchoring a lot of those features are the Depth Charts, which in addition to providing information on their own, power the playoff odds and projected standings we host on the site.

The Depth Charts are pretty simple in theory. They blend together two of the leading projection systems (Steamer and ZiPS) and then scale those projections to our expectations about playing time. The Depth Charts are updated constantly to provide the most up-to-date snapshot possible for the current state of a team, league, or position. You can think of the Depth Charts as the baseline projections for the entire site, as they are the input for the projected standings, playoff odds, and game odds.

As far as the basic Depth Charts are concerned, there are essentially three different views. You can look at a team’s Depth Chart, you can look at Depth Charts by position, and you can look at the summary data of both of those at one. To generate each the charts, we take a 50/50 mix of Steamer and ZiPS for the rate stats and then our staff manually allocates playing time based on what we expect teams to do with their lineups and injury histories.

Steamer and ZiPS update nightly throughout the season and our playing time estimates change every 15 minutes (if necessary). If a player gets hurt, we update their playing time. If a player gets moved to the pen or changes positions, we update the Depth Charts. Also, the Depth Charts are showing what we expect to happen for the rest of the season, not the stat line we expect them to end the season with.

As always, when you’re dealing with constantly updating information, there are occasionally bugs. If you see something that looks obviously wrong, it’s likely just a database error that will resolve itself once the system updates in a few minutes.

As far as viewing options, you can look at the Depth Charts in team view, in position view, or in summary view. In team view, you get a breakdown of a single team by position, meaning on the Blue Jays page there’s a box for catchers, first basemen, etc with the expectation that each position for each team will receive 700 PA per season. Obviously that will vary a bit, but it’s a good rule in general. Each team also has a box for all positional players and all pitchers, as well as a box on the right that shows you where they stand overall.

In position view, you can look every team’s Depth Chart at any one position. For example, here is the page for catchers. This allows you to compare positions around the league and see which group of backstops is most valuable. Obviously these rankings are based on the projection systems and our playing time estimates, so if you believe playing time will shake out differently that we do, you might expect to see a different overall ranking.

Finally, this handy grid collapses those two views into one. You can’t see all of the players in that view, but it puts together each team’s expected WAR at each position so that you can quickly compare how teams and positions stack up against each other.

The Depth Charts are very useful for a couple of reasons. First, they blend two projection systems together without you having to do any of the work, and that’s helpful because aggregate projections are better than any one system. Second, playing time is controlled by humans. While projection systems are much better at forecasting performance than people, projection systems aren’t very good at figuring out how much playing time a player is actually going to get. Finally, the Depth Charts gather a lot of information in one place. We’ve had projections on the site for years, but having them built into the system like this allows you to make a lot of comparisons and see where teams are strong or weak.

So as you get back into the swing of things this season, the Depth Chart pages will be a valuable resource if you want to look into the future. Obviously, the charts are only as good as their inputs, but if you care at all about the inputs, the way the data is presented is really helpful.


The Beginner’s Guide to Sample Size

A baseball season is the amalgamation of a lot of little events. Each pitch fits into a plate appearance which fits into an inning which fits into a game which fits into a series which fits into a season. That’s a lot of little data points flowing into an overall end result. We care a lot about which players will have good seasons and careers. It matters to us that we can distinguish between good players and bad players, but doing so requires that we understand which chunks of data are meaningful and which aren’t.

Enter sample size. You’ve heard this phrase plenty over the last few years when talking about baseball statistics and it’s usually a conversation ended rather than a conversation started. Someone cites a stat and then another person says it doesn’t matter because the sample size is too small. What does that mean and how should we properly think about sample size in baseball?

Read the rest of this entry »


Interpreting Playoff Odds and Projected Standings

As you might have noticed, our playoff odds and projected standings are now up and running for the 2015 season. If you’re a regular FanGraphs reader, or intend to be this year, you’re going to see a decent amount about the various numerical expectations we post on the site. While these odds and standings are a lot of fun and a great tool for taking stock of the league, it’s also pretty easy to misunderstand or use them improperly.

Before I run through the proper way to read the odds and standings, I want to provide a brief overview of how we arrive at the numbers you see on the site.

Our player projections are based on the FanGraphs Depth Charts which are generated by giving equal weight to Steamer and ZiPS (two projection systems) and then manually estimating playing time. Then based on the depth charts, we simulate the season 10,000 times and report the results as playoff odds and projected standings. We also host a Season to Date model and Coin Flip model which project the season based on the current year’s stats (instead of projections) or a 50/50 chance at winning each game, respectively.

Read the rest of this entry »


The Beginners Guide to the Positional Adjustment

Getting newcomers on board with Wins Above Replacement has a number of challenges, but the way we measure and evaluate defense is typically one of the biggest sticking points. Getting an open-minded person to believe in wOBA instead of average and RBI isn’t that difficult. Getting someone to accept that there’s more to base running than the number of stolen bases is pretty easy. Convincing them that it’s useful to compare players to replacement level is a bit harder, but nothing really compares to the questions people have about defense.

There’s good reason for this. Again, a thoughtful person can see the flaws in using errors or fielding percentage, but it’s harder to sell the merits of runs saved metrics for a number of reasons. If you want a little more information on how we measure defense and why we do it that way, check out our beginner’s guide to measuring defense. Today, we’re going to consider a corollary to the actual measurement of defense which is the positional adjustment.

Read the rest of this entry »


Stats to Avoid: Batting Average

Batting average is the most recognizable statistic in the game. It might be the most famous statistic in sports and it’s probably up there with Gross Domestic Product (GDP) among the most popular statistics about anything anywhere on the planet. Even people who don’t like or watch baseball understand what batting average means. Just like how you know a singer is famous because your mother knows who they are, you know batting average is huge because you never have to explain it to anyone.

Which is why it’s so difficult to remove it from our vernacular. Batting average is built into the language of the sport, but it’s simply not a useful statistic and if you want to analyze a player properly, it’s something you don’t want to pay close attention to at all.

Read the rest of this entry »


The Beginner’s Guide to Replacement Level

Like any good acronym, the letters in WAR each stand for something. The “W” stands for wins, which is something with which we’re all pretty familiar. The “A” stands for above, which is just an adjoining word, but the “R” stands for replacement which is a place where newcomers sometimes get lost. What is replacement level, why does it matter, and how do you calculate it? If WAR compares players to replacement level, to understand WAR we need to understand R.

Let’s start from the beginning. Replacement level is simply the level of production you could get from a player that would cost you nothing but the league minimum salary to acquire. Minor league free agents, quad-A players, you get the idea. The concept is pretty tidy. These are the players that are freely available and if five of your MLB level players came down with the flu, you could go out and acquire replacement level players without really giving up anything you value other than their union mandated payday.

In other words, if you had no one on your roster on April 1st and just needed to populate a team, you’re generally signing replacement level players.

Read the rest of this entry »